推荐回答
我做的是用SiO2改性,然后再添加氮这样即可以提高稳定性,也可以提高活性。
黄皓章2019-12-21 23:58:22
提示您:回答为网友贡献,仅供参考。
其他回答
-
优点:1、合适的能带电位2、高化学稳定性3、无毒无害4、较高的光电转换效率5、低成本6、高活性缺点:无可见光吸收。
黄石卫2019-12-22 00:20:00
-
价廉易得、无毒、催化活性高、氧化能力强、稳定性好、可见有机物持续矿化成无机小分子等。
齐晗希2019-12-22 00:08:15
-
自从1972年Fujishu和Honda报道了TiO2在紫外光照射下有较好的光催化效应以来,由于TiO2稳定、无毒、价格低廉,容易再生和回收利用等优点,在光催化方面得到广泛的研究。特别是在污水降解处理,有机染料表面修饰,以及贵金属沉积等方法使TiO2在可见光区缩小能带间隙两种变化。这两变化都能有效减少价带中电子跃迁到导带的能量,从而使它们吸收带红移。金属掺杂起步比较早,研究的比较多,而非金属掺杂研究的不是很多。通过溶胶—凝胶法、PLD沉积法、磁控溅射法等一些实验方法提供大量数据说明TiO2在掺杂后其吸收光谱实现红移的研究较多。而基于量子理论的第一性原理计算方法的理论分析其形成红移现象的一些细节、机理研究较少。21世纪,能源和环境已经成为可持续发展面临的两大重要问题。半导体化剂由于节约能源、净化环境等优点越来越受到国内外学者的关注和研究。多的半导体光催化剂中TiO2以其无毒,超亲水性,化学稳定性好,氧化能廉价易得而成为最理想的光催化剂。特别是TiO2在环境污染物降解处理上有大的优点。因此,TiO2在食物防霉,室内外墙壁、玻璃防污自净,烟垢自净用治疗等方面都有巨大的应用前景。除此之外,TiO2还可用来作染化敏太阳池。纳米TiO2太阳能电池以其与固态光伏电池相媲美的高光电转换效率,价廉,无污染等巨大优势使其具有广阔的前景和商业价值。所以研究TiO2对能2环境问题有着重大的科学意义和应用价值。
赵高俊2019-12-21 23:38:58
-
金属离子掺杂是利用物理或化学方法,将金属离子引入到TiO2晶格结构内部,从而在其晶格中引入新电荷、形成缺陷或改变晶格类型,影响光生电子和空穴的运动状况、调整其分布状态或者改变TiO2的能带结构,最终导致TiO2的光催化活性发生改变。合理的金属离子掺杂可使TiO2光吸收能力提高、TiO2表面对目标反应物的吸收增加、电子和空穴复合率降低,从而提高TiO2的光催化性能。麦森光催化纳米二氧化钛外观为白色疏松粉末。在可见光或紫外光的作用下具有很强的氧化还原能力,化学性能稳定,能将甲醛,甲苯,二甲苯,氨,氡,TVOC等有害有机物,污染物,臭气,细菌,病毒,微生物等有害有机物彻底分解成无害的CO2和H2O,并具有去除污染物,亲水性,自洁性等特性,性能持久,不产生二次污染。参考河北麦森钛白粉。
齐有伟2019-12-21 23:20:44
相关问答
二氧化钛的安全性包括吸收,分布,新陈代谢,排泄以及急性短期和长期的毒性.二氧化钛为难溶化合物.对包括人在内的几个物种进行研究,显示摄取二氧化钛后既没有大量的吸收也没有组织的沉积.关于可溶性钛化合物的研究至今还没有结论.有价值的记载论述吸收少量的钛离子没有毒性影响.原生钛光触媒技术光催化材料激活技术采用贵金属掺杂,稀土材料和光敏化材料同纳米二氧化钛结合,有效缩短激活能量,简单的讲就是激活能量从紫外光过度到可见光方向,由于贵金属参杂技术的应用,改变光触媒材料表面的电子激活后,延长电子和空穴的负荷时间,保证光催化性能在光源暗淡、甚至一定时间段无光照的情况下,继续发挥其有效功能.纳米光催化材料必须通过恰当的黏合材料结合,形成完整的符着体系,能在常温下同大多数基材,如墙面、木材、混凝土,塑料,布艺等有效地附着,才能保证光催化材料长期稳定发挥功能.原生钛光触媒采用有机硅改性的无机有机杂化粘合体系,在保证光催化功能极大化同时,有保证光催化功能极大化同时,有保证附着材料的长期稳定,有效地保证光触媒的功能.通过原生钛专有的将结晶的锐钛纳米二氧化钛用稀土金属和贵金属离子包覆,然后通过有效的分散,同无机有机杂化粘合体系结合,形成高活性,低激活能量的光催化体系,并实现在常温下固化附着.原生态光触媒技术,不但继承了该技术早期的纳米材料、光催化和抗菌抑菌等基础功能,并且通过再研升级自由的激活技术、参杂技术和包覆分散技术,进一步提升了光触媒的技术功效.技术优越性牢固的基材粘合技术其中,能级降低技术突破了传统光触媒必须在紫外光照射下才能发挥作用的局限性,在可见光部分,甚至一定无光条件下同样能够发生催化反应作用,此技术突破结合精细化工和纳米改姓缓释涂层技术的应用,对污染源的控制起到了单一技术产品不能达到的功效。