如何在mac版excel中添加数据分析工具

黄炳福 2019-11-05 21:50:00

推荐回答

07版的话圆圈--选项--加载项--转到excel加载项,对应打勾03的话应该是选项--宏--加载宏一般默认都可以加载,实在没有的话可能要重新安装程序,自定义安装,excel及功能模块选择全部本次安装。
车建全2019-11-05 23:03:13

提示您:回答为网友贡献,仅供参考。

其他回答

  • 1、打开excle,单击左上角工具。
    赵香梅2019-11-12 06:25:34
  • 方法/步骤打开excel2019操作表,点击菜单栏的“文件”按钮,弹出的下拉菜单中找到“选项”。点击“选项”,会弹出excel选项对话框,并找到“加载项”选项。点击“加载项”,进入到加载项的界面中,设置下方的管理,设置成“Ecxel加载项”。点击“转到”按钮,出现加载宏设置框。在可用加载宏处对“分析工具库”和“分析工具库-VBA”前面单击打对勾选中,之后点击“确定”。6回到excel2019工作表界面,点击菜单栏的“数据”,在数据功能右侧就会出现数据分析工具了。
    樊技飞2019-11-05 22:20:47
  • 1、首先找到Office办公软件并新建Excel进入excel主界面。2、然后我们点击Excel主界面左上角菜单栏里的''文件''选项。3、然后找出''选项''并点击打开。4、在弹出界面中选择''加载项'',并点击加载项。5、在加载项中找出''分析工具库’。6、点击管理中的''转到''按钮,在弹出的界面中选择''分析工具库'',再点击点击确定,这样数据分析就会出现在Excel功能条里。7、点击菜单中的''数据'',然后选择''数据分析,在数据分析中选择所需要的功能就可以了。
    赵颖辉2019-11-05 22:06:56
  • 在“数据”选项下的“分析”“数据分析”里。如果没有找到“数据分析”,请在Excel选项下的加载项中,将处于非活动状态的应用程序“分析数据库”添加到Excel工具中,即可。
    齐晓民2019-11-05 22:03:47

相关问答

对数据敏感就是当你看到一大堆杂乱无章的数据时,你会很有耐心的找出其中的规律所在,不厌其烦,并且乐在其中。而做典型的数据分析可能包含以下三个步骤:1、探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。3、推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。数据分析过程实施数据分析过程的主要活动由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。一、识别信息需求识别信息需求是确保数据分析过程有效性的首要条件,可以为收集数据、分析数据提供清晰的目标。识别信息需求是管理者的职责管理者应根据决策和过程控制的需求,提出对信息的需求。就过程控制而言,管理者应识别需求要利用那些信息支持评审过程输入、过程输出、资源配置的合理性、过程活动的优化方案和过程异常变异的发现。 二、收集数据有目的的收集数据,是确保数据分析过程有效的基础。组织需要对收集数据的内容、渠道、方法进行策划。策划时应考虑:①识别的需求转化为具体的要求,如评价供方时,需要收集的数据可能包括其过程能力、测量系统不确定度等相关数据;②确由谁在何时何处,通过何种渠道和方法收集数据;③录表应便于使用;④取有效措施,防止数据丢失和虚假数据对系统的干扰。三、分析数据分析数据是将收集的数据通过加工、整理和分析、使其转化为信息,通常用方法有:老七种工具,即排列图、因果图、分层法、调查表、散步图、直方图、控制图;新七种工具,即关联图、系统图、矩阵图、KJ法、计划评审技术、PDPC法、矩阵数据图;四、数据分析过程的改进数据分析是质量管理体系的基础。组织的管理者应在适当时,通过对以下问题的分析,评估其有效性:①供决策的信息是否充分、可信,是否存在因信息不足、失准、滞后而导致决策失误的问题;②息对持续改进质量管理体系、过程、产品所发挥的作用是否与期望值一致,是否在产品实现过程中有效运用数据分析。③收集数据的目的是否明确,收集的数据是否真实和充分,信息渠道是否畅通;④据分析方法是否合理,是否将风险控制在可接受的范围;⑤据分析所需资源是否得到保障。
今天就我们用过的几款大数据分析工具简单总结一下,与大家分享。1、Tableau这个号称敏捷BI的扛把子,魔力象限常年位于领导者象限,界面清爽、功能确实很强大,实至名归。将数据拖入相关区域,自动出图,图形展示丰富,交互性较好。图形自定义功能强大,各种图形参数配置、自定义设置可以灵活设置,具备较强的数据处理和计算能力,可视化分析、交互式分析体验良好。确实是一款功能强大、全面的数据可视化分析工具。新版本也集成了很多高级分析功能,分析更强大。但是基于图表、仪表板、故事报告的逻辑,完成一个复杂的业务汇报,大量的图表、仪表板组合很费事。给领导汇报的PPT需要先一个个截图,然后再放到PPT里面。作为一个数据分析工具是合格的,但是在企业级这种应用汇报中有点局限。2、PowerBIPowerBI是盖茨大佬推出的工具,我们也兴奋的开始试用,确实完全不同于Tableau的操作逻辑,更符合我们普通数据分析小白的需求,操作和Excel、PPT类似,功能模块划分清晰,上手真的超级快,图形丰富度和灵活性也是很不错。但是说实话,毕竟刚推出,系统BUG很多,可视化分析的功能也比较简单。虽然有很多复杂的数据处理功能,但是那是需要有对Excel函数深入理解应用的基础的,所以要支持复杂的业务分析还需要一定基础。不过版本更新倒是很快,可以等等新版本。3、Qlik和Tableau齐名的数据可视化分析工具,QlikView在业界也享有很高的声誉。不过QlikSeanse产品系列才在大陆市场有比较大的推广和应用。真的是一股清流,界面简洁、流程清晰、操作简单,交互性较好,真的是一款简单易用的BI工具。但是不支持深度的数据分析,图形计算和深度计算功能缺失,不能满足复杂的业务分析需求。最后将视线聚焦国内,目前搜索排名和市场宣传比较好的也很多,永洪BI、帆软BI、BDP等。不过经过个人感觉整体宣传大于实际。4、永洪BI永洪BI功能方面应该是相对比较完善的,也是拖拽出图,有点类似Tableau的逻辑,不过功能与Tableau相比还是差的不是一点半点,但是操作难度居然比Tableau还难。预定义的分析功能比较丰富,图表功能和灵活性较大,但是操作的友好性不足。宣传拥有高级分析的数据挖掘功能,后来发现就集成了开源的几个算法,功能非常简单。而操作过程中大量的弹出框、难以理解含义的配置项,真的让人很晕。一个简单的堆积柱图,就研究了好久,看帮助、看视频才搞定。哎,只感叹功能藏得太深,不想给人用啊。5、帆软BI再说号称FBI的帆软BI,帆软报表很多国人都很熟悉,功能确实很不错,但是BI工具就真的一般般了。只能简单出图,配合报表工具使用,能让页面更好看,但是比起其他的可视化分析、BI工具,功能还是比较简单,分析的能力不足,功能还是比较简单。帆软名气确实很大,号称行业第一,但是主要在报表层面,而数据可视化分析方面就比较欠缺了。6、Tempo另一款工具,全名叫“Tempo大数据分析平台”,宣传比较少,2019年Gartner报告发布后无意中看到的。是一款BS的工具,申请试用也是费尽了波折啊,永洪是不想让人用,他直接不想卖的节奏。第一次试用也是一脸懵逼,不知道该点那!不过抱着破罐子破摔的心态稍微点了几下之后,操作居然越来越流畅。也是拖拽式操作,数据可视化效果比较丰富,支持很多便捷计算,能满足常用的业务分析。最最惊喜的是它还支持可视化报告导出PPT,彻底解决了分析结果输出的问题。深入了解后,才发现他们的核心居然是“数据挖掘”,算法十分丰富,也是拖拽式操作,我一个文科的分析小白,居然跟着指导和说明做出了一个数据预测的挖掘流,简直不要太惊喜。掌握了Tempo的基本操作逻辑后,居然发现他的易用性真的很不错,功能完整性和丰富性也很好。
以下推荐一些从入门到精通——关于学习数据分析的书籍清单!入门篇《深入浅出数据分析》:大头书,HeadFirst系列,内容很浅,比较适合没有基础的人作为科普读物,适合快速入门;《统计数字会撒谎》:本文不涉及枯燥的数学公式与推理过程,通俗易懂,其实讲的都是统计学最基本的常识,可是却往往容易被人所忽视;《谁说菜鸟不会数据分析》:不错的工具类书籍。比较浅显,适合完全没有Excel或对Excel似懂非懂的人。讲了一些方法论的东西,但是非常的简单,不太适合对Excel熟悉的读者;《深入浅出统计学》:帮你快速了解统计学相关的知识。进阶篇《MySQL必知必会》:不到250页的小册子,实践性很强,基本没有什么理论的堆砌,完完全全就是一本实践指南,教会你怎么用SQL语句操作MySQL;《高性能MySQL第3版)》:跟《MySQL必知必会》相似的书籍,主要讲解了MySQL的理论和实践知识;《数据化管理:洞悉零售及电子商务运营》:讲解在企业中应用数据的例子,读完受益匪浅,里面举的很多例子都很接地气,很值得数据分析师阅读学习。高级篇《统计学》:统计比较通用的入门教材了,也算是兼顾数学证明和应用,可读性没有上面强,但是也非常的通俗易懂,有很多统计学专业的起始教材也会选择这本。Python数据分析》:作者对于利用Python进行数据分析有着很丰富的经验,因此写出的书也是深入浅出,让人很容易就能看懂。对一个热爱学习的数据分析师来说学一门数据分析处理的编程语言是一件很有用的事情。Python数据挖掘入门与实践》:作为一个专业的数据分析师,实际上很多时候都需要用到模型。这本书作为数据挖掘入门读物,介绍了数据挖掘的基础知识、基本工具和实践方法,通过循序渐进地讲解算法,还是挺不错的一本书。

做财富端这一块,客户资源才是核心,金融机构偏爱银行理财经理,主要是在于银行这个平台相对而言客户积累多,质量也不错,同时因为银行相对于其他金融机构来说跟客户沟通的产品也很多,除了理财产品外,还有保险、个人贷款、结算工具等,所以银行理财经理相对而言跟客户的黏性也比较强。还有一点是银行是经营风险的平台,对员工的合规风险教育比较完善,所以银行理财经理大部分合规意识比较强。

当然重中之重还是在于客户资源的积累,回到题主的话题,现在信托的管理规模已经跟银行理财规模旗鼓相当,逐渐被大众所认可。一般而言,客户认购是300万起,一个信托理财经理平均一年的任务目标是1个亿,那么你的300万以上客户积累要有30个左右,当然有大客户最好,所以去信托之前得排一下名下客户的质量。第二个从收入的角度而言,大部分信托理财经理是大于银行理财经理的,一是底薪高,一般市面上初级的销售在8000~10000万一个月,二是有提点,市场价格在千3~千4,大部分银行理财经理是没有提成之说的。第三个就是稳定性的角度,银行理财经理的稳定性要高于信托理财经理,大部分银行理财经理是维护存量客户,开发睡眠低效客户,基本上没有外拓客户的压力。但是信托理财经理是要求资源变现的,而且起点又高,压力比较大,流动性比较大。第四点就是看你去哪家信信托公司了,中国信托公司有68家,各有各的脾气,主要看考核机制,有的信托公司考核比较严苛,市场化程度比较高,完不成业绩要不降级要不滚蛋,这类公司攻略难度较大,但是回报丰盛。还有的信托公司不是市场化程度不高或者压根就没有市场化,这类公司一般比较安逸,业绩指标比较佛系,完不成也就那样,公司传导的压力比较小,混混日子是可以的,赚钱比较难。还有就是完全无欲无求的信托公司,这类信托公司的财富人员甚至都不用募集资金,负责中后台工作。

但是现在形势变了,以前信托项目资金来源主要是机构端客户,大部分为银行或者体系内的企业成员,然而机构客户受政策性影响太大,不稳定,所以现在大部分信托公司都在发力个人零售端建设,遍地设立财富中心,广招理财经理。也在建设自己的财富品牌,将财富人员同信托公司母体剥离,归口到新设立的财富公司下面。这样做一是为了方便管理,毕竟财富以后越来越难做,人员流动性会越来越大。二是给予市场化的薪酬,因为大部分信托公司是国企背景,员工薪资是有个工资帽的,所以为了突破工资帽限制,将理财经理的工资纳入财富公司里面。总体恶言,信托财富市场化是一个趋势,要在行业站稳脚跟,关键还是在于客户资源的积累。最后在提一句,一般情况下,银行得客户的资源很难转化为信托客户,转化率比较低,这个要做好心理预期。现有的客户是打基础用的,后续要有所突破,还是需要外拓客户的。但是我认为随着信托理财越来越被大众所认可,同时横向比较,国人爱固收,信托产品在安全性和收益性考量是性价比最高的产品,尤其财富管理这个行业刚刚兴起,信托产品所具有的风险隔离、税务筹划、财富传承功能是天然从事财富管理事业的土壤,未来是光明的。