CRM系统数据分析是什么?

齐振法 2019-11-05 21:47:00

推荐回答

首先,如何使用CRM系统实现客户数据记录。客户是日积月累存储下来的,以往人工记录客户信息,数据保存工作量大,通过CRM系统,可实现快速电子化记录,并且可永久保存,随需查阅使用,方便、高效比如说上一套CRM系统,记录客户详细信息,如果客户是企业,还可记录客户企业的组织架构、关键联系人角色、客户购买行为及交易记录、法律/财务/信誉信息,还可了解此商机的利润、负债、义务及风险情况,通过移动端随时访问客户信息,随时查看所需信息,了解客户历史交易以便更好地与客户沟通,随时完成交易。其次,客户归类分析。客户数据众多,可根据客户信息记录归类分析,将需求相同或相近的进行客户画像分析,根据客户购买记录订单情况等,进行客户细分管理,分类别实现对应的营销方法。再次,深入了解客户习惯和需求。需求是促使客户消费成单的最主要原因,根据系统记录的客户信息,找到客户急需什么产品,需要解决什么问题,才能形成一个清晰的营销策略,然后根据不同的客户群,具有针对性的开展个性化营销。对于高价值的客户,需要重点维护和跟进,投入企业最优的人力和资源,提高成单率。最后,懂得利用CRM系统的数据报表图。如说果系统是支持统计数据并自动生成可视化报表的,报表根据用户的需求生成,用户可根据报表信息详细分析客户实际情况,全方位了解客户数据,清晰客户定位,便于作出下一步的营销策略。
赵高兰2019-11-05 22:06:42

提示您:回答为网友贡献,仅供参考。

其他回答

  • 为用户画像的焦点工作就是为用户打“标签”,而一个标签通常是人为规定的高度精炼的特征标识,如年龄、性别、地域、用户偏好等,最后将用户的所有标签综合来看,基本就可以勾勒出该用户的立体“画像”了。借助CRM系统,轻松勾勒出用户“画像”:1、客户特征细分借助CRM,可以对现有客户或者是潜在客户的特征进行整理分析,这些信息是多维度的,包括姓名、性别、年龄、联系方式、地址、职业、客户编号等基本信息,此外,企业还可以根据自身需求添加自定义字段,在开发以及维护的过程中不断完善客户资料,形成对客户的基础认知。2、客户价值细分CRM可以详细记录客户的消费记录,打开CRM,就可以详细看到客户的下单时间,购买的产品种类、数量、价格,下单的频率等。企业可以根据这些数据统计得出客户的价值,哪些客户是一次性消费大宗消费的、哪些客户是持续性消费的、哪些客户从来没有消费过。结合消费金额和消费频率,可以从总体上将客户划分价值区间:高价值客户、低价值客户、中间客户等。3、客户需求细分CRM中的各个板块既相互独立又相互融合,企业可以根据需要做交叉数据分析。根据CRM中的咨询记录、沟通与跟进记录、订单记录、收款记录及合同记录等,企业可以得出目标客户及客户群对产品的需求及购买规律:客户需要的是什么产品、客户购买的是什么产品、在什么时间购买的、购买的频率是什么……从而得出客户的需求状况,以及需求是否被满足。消费方式的改变促使用户迫切希望尽快获取自己想要了解的信息,所以说,基于用户画像上的精准营销不管对企业还是对用户来说,都是有需求的,这会给双方交易带来极大便捷,也为双方平等沟通搭建了一个畅通平台。
    赵颖隽2019-11-12 22:21:26
  • 这个不好说,要看你的CRM中包括哪些数据,大致可以做以下的一些数据分析:一、分析销售进度没有使用CRM的企业管理者通常很难在很短的时间内了解到所有的销售人员跟进客户的情况、客户最近的活、购买了哪些产品,这对于管理层面来说是一个缺憾。但是使用CRM的企业可以很轻松地做到这一点,唯一要做的就是要让销售人员将自己的销售情况录入进去,要让他们自觉去做这些事情,只需要让他们意识到使用CRM的好处就可以了。二、分析并预测客户需求一般来说基本的客户信息能向我们反映出一定的信息,比如客户的收入、职位可以推断出客户的消费水平。但是客户的需求则需要通过客户的购买历史、客户曾经感兴趣的产品、客户的年龄、客户的爱好等等进行推测。如果CRM系统能与社交媒体结合的话,那么曾经讨论过的内容、最近感兴趣的话题、最新的产品趋势等等都可以进一步预测到客户的需求。三、分析客户反馈互联网时代造就了更便利的交流,现在与客户交流的方式越来越多,除了最普通的电话、短信、邮件,现在更多的还有微博、微信以及各种公众企业平台。客户在遇到问题后,寻求企业获得帮助的渠道也需要收集起来,并将客户反馈的内容进行分类,并不断完善出更好的解决方案。这样我们可以更了解客户容易在哪些方面遇到问题,如何更好地为客户解决问题。四、分析产品的市场欢迎度市场上的产品也总是离不开28定律,最热门的总是在少的那一部分。想要了解在企业的产品线上,哪些产品更受客户喜爱?哪些产品沦为冷门?这就需要运用CRM进行分析,并不断调整市场策略,让企业能开发出更受客户欢迎的新产品。
    黄盛章2019-11-05 23:03:04
  • CRM行业的重要卖点之一是大数据挖掘,针对如何利用CRM系统进行数据挖掘来进行客户关系管理,这里以百会CRM为例,进行一个简单地说明。客户识别CRM开始于客户识别,这个阶段的目的就是找到最有可能成为企业的新客户;对企业来说最有价值的是老客户;本阶段还要识别出那些即将流失的客户并且研究如何挽回。百会CRM可以全方位地收集客户资料和信息,及时记录对应的客户线索,并将其进行关联,当客户联系销售人员时候,能够第一时间识别出来。客户吸引发现了潜在客户群后,企业可以采取相应的营销策略来吸引这些潜在客户群。吸引客户的一个有效方法就是直接营销,直接营销是企业向客户直接进行推销,通过多种多样的渠道刺激客户直接下单。百会CRM可通过线索表格,无论是从网站获取的,还是线下的研讨会获取的线索信息,百会CRM能够通过对数据的分析,对不同的营销对象来推出对应的营销活动,抓住客户的兴趣。客户保留客户满意度指的是客户对企业的期望值与客户本身所感知之间的比较,是企业能留住老客户很重要的条件。企业保留老客户的方法包括一对一营销、客户忠诚度项目和投诉管理。一对一营销指通过分析、发现和预测特定客户的行为,客户忠诚度项目的目的是企业和客户维持较长时间的业务联系。客户忠诚度项目包括客户流失的分析、信用评分、服务质量和对忠诚度项目的满意度。百会CRM可以为客户提供一对一的客户定制服务,对客户进行的有针对性的个性化营销活动,从而为更好的保留客户打下基础。客户开发客户开发的要素包括客户生命周期价值的分析,升级销售和交叉销售的市场分析。客户生命周期价值指企业从客户身上所获得的总净收益。升级销售指在合适的时间,为合适的客户提供合适的服务。交叉销售指将各种资源时间,金钱、构想、活动等整合,从而降低成本,通过多渠道使企业接触到更多的潜在客户。百会CRM的数据分析的主要目的是通过分析客户购买行为的数据,挖掘出隐藏在客户购买行为后面的规则,最大化客户交易强度和价值。
    齐春生2019-11-05 22:20:35
  • 百会CRM认为,一个CRM系统是否能够真正发挥功效,最终取决于企业是否真正理解了"以客户为中心"的CRM理念,并把这一理念贯彻到企业的业务实践中去。数据分析是指用适当的对收集来的大量数据进行分析,提取有用信息并形成结论,对数据加以详细研究和概括总结的过程。应用一段时间之后,企业CRM系统中存在大量数据,为数据分析做好了准备。为什么要做数据分析呢?首先是实现从商业数据到商业信息的转化。数据是商业活动的基础,也是商业活动的结果。企业与客户建立的关系过程中形成的大量数据,对企业今后的运营并赢得市场提供了有价值的参考依据。随着数据挖掘技术日益成熟,CRM应用不断深入,数据挖掘技术也会逐渐成为获取有价值信息的重要技术和工具。
    窦金乾2019-11-05 22:03:33

相关问答

对数据敏感就是当你看到一大堆杂乱无章的数据时,你会很有耐心的找出其中的规律所在,不厌其烦,并且乐在其中。而做典型的数据分析可能包含以下三个步骤:1、探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。3、推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。数据分析过程实施数据分析过程的主要活动由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。一、识别信息需求识别信息需求是确保数据分析过程有效性的首要条件,可以为收集数据、分析数据提供清晰的目标。识别信息需求是管理者的职责管理者应根据决策和过程控制的需求,提出对信息的需求。就过程控制而言,管理者应识别需求要利用那些信息支持评审过程输入、过程输出、资源配置的合理性、过程活动的优化方案和过程异常变异的发现。 二、收集数据有目的的收集数据,是确保数据分析过程有效的基础。组织需要对收集数据的内容、渠道、方法进行策划。策划时应考虑:①识别的需求转化为具体的要求,如评价供方时,需要收集的数据可能包括其过程能力、测量系统不确定度等相关数据;②确由谁在何时何处,通过何种渠道和方法收集数据;③录表应便于使用;④取有效措施,防止数据丢失和虚假数据对系统的干扰。三、分析数据分析数据是将收集的数据通过加工、整理和分析、使其转化为信息,通常用方法有:老七种工具,即排列图、因果图、分层法、调查表、散步图、直方图、控制图;新七种工具,即关联图、系统图、矩阵图、KJ法、计划评审技术、PDPC法、矩阵数据图;四、数据分析过程的改进数据分析是质量管理体系的基础。组织的管理者应在适当时,通过对以下问题的分析,评估其有效性:①供决策的信息是否充分、可信,是否存在因信息不足、失准、滞后而导致决策失误的问题;②息对持续改进质量管理体系、过程、产品所发挥的作用是否与期望值一致,是否在产品实现过程中有效运用数据分析。③收集数据的目的是否明确,收集的数据是否真实和充分,信息渠道是否畅通;④据分析方法是否合理,是否将风险控制在可接受的范围;⑤据分析所需资源是否得到保障。

做财富端这一块,客户资源才是核心,金融机构偏爱银行理财经理,主要是在于银行这个平台相对而言客户积累多,质量也不错,同时因为银行相对于其他金融机构来说跟客户沟通的产品也很多,除了理财产品外,还有保险、个人贷款、结算工具等,所以银行理财经理相对而言跟客户的黏性也比较强。还有一点是银行是经营风险的平台,对员工的合规风险教育比较完善,所以银行理财经理大部分合规意识比较强。

当然重中之重还是在于客户资源的积累,回到题主的话题,现在信托的管理规模已经跟银行理财规模旗鼓相当,逐渐被大众所认可。一般而言,客户认购是300万起,一个信托理财经理平均一年的任务目标是1个亿,那么你的300万以上客户积累要有30个左右,当然有大客户最好,所以去信托之前得排一下名下客户的质量。第二个从收入的角度而言,大部分信托理财经理是大于银行理财经理的,一是底薪高,一般市面上初级的销售在8000~10000万一个月,二是有提点,市场价格在千3~千4,大部分银行理财经理是没有提成之说的。第三个就是稳定性的角度,银行理财经理的稳定性要高于信托理财经理,大部分银行理财经理是维护存量客户,开发睡眠低效客户,基本上没有外拓客户的压力。但是信托理财经理是要求资源变现的,而且起点又高,压力比较大,流动性比较大。第四点就是看你去哪家信信托公司了,中国信托公司有68家,各有各的脾气,主要看考核机制,有的信托公司考核比较严苛,市场化程度比较高,完不成业绩要不降级要不滚蛋,这类公司攻略难度较大,但是回报丰盛。还有的信托公司不是市场化程度不高或者压根就没有市场化,这类公司一般比较安逸,业绩指标比较佛系,完不成也就那样,公司传导的压力比较小,混混日子是可以的,赚钱比较难。还有就是完全无欲无求的信托公司,这类信托公司的财富人员甚至都不用募集资金,负责中后台工作。

但是现在形势变了,以前信托项目资金来源主要是机构端客户,大部分为银行或者体系内的企业成员,然而机构客户受政策性影响太大,不稳定,所以现在大部分信托公司都在发力个人零售端建设,遍地设立财富中心,广招理财经理。也在建设自己的财富品牌,将财富人员同信托公司母体剥离,归口到新设立的财富公司下面。这样做一是为了方便管理,毕竟财富以后越来越难做,人员流动性会越来越大。二是给予市场化的薪酬,因为大部分信托公司是国企背景,员工薪资是有个工资帽的,所以为了突破工资帽限制,将理财经理的工资纳入财富公司里面。总体恶言,信托财富市场化是一个趋势,要在行业站稳脚跟,关键还是在于客户资源的积累。最后在提一句,一般情况下,银行得客户的资源很难转化为信托客户,转化率比较低,这个要做好心理预期。现有的客户是打基础用的,后续要有所突破,还是需要外拓客户的。但是我认为随着信托理财越来越被大众所认可,同时横向比较,国人爱固收,信托产品在安全性和收益性考量是性价比最高的产品,尤其财富管理这个行业刚刚兴起,信托产品所具有的风险隔离、税务筹划、财富传承功能是天然从事财富管理事业的土壤,未来是光明的。