实盘量化交易平台有哪些?

管爱枝 2019-12-21 19:16:00

推荐回答

量化平台有很多,能上市盘的也就那几个,最主要的是要安全,并且最好是分布式的。我用过好多种,比如巨宽,文化,MT4,MC,米宽等等。各种语言也都尝试过,殊途同归。基本上市面上支持语言最多的就是发明者量化了,C++,Python,JavaScript,麦语言都支持,好像还有模块可视化编程。量化交易,说白了就是自动化交易。避免手工交易时心态带来的不良决策。平时就在发明者量化上跑数字货币策略比较多一点,商品期货如果行情来了,也偶尔开策略跑下。
黄瞻云2019-12-21 20:24:20

提示您:回答为网友贡献,仅供参考。

其他回答

  • 既能支持股票又能支持期货的有掘金量化、聚宽、米筐等,单单支持期货又开拓者,文华等。
    车延东2019-12-21 20:41:32
  • 主要是监管层面,要求交易在券商的PB柜台,所以量化交易平台未来合规就需要对接券商平台,这涉及工作很多,不是那么接单给个接口那么简单的事情。
    龙小萱2019-12-21 20:08:03
  • 量化交易平台的构建,打造满足用户需求及体验良好的量化交易平台是重中之重,以及共享经济商业模式的创新。
    连亚琴2019-12-21 20:01:51
  • Python量化投资框架:回测+模拟+实盘Python量化投资模拟交易平台 1.股票量化投资框架体系1.1回测实盘交易前,必须对量化交易策略进行回测和模拟,以确定策略是否有效,并进行改进和优化。作为一般人而言,你能想到的,一般都有人做过了。回测框架也如此。当前小白看到的主要有如下五个回测框架:Zipline:事件驱动框架,国外很流行。缺陷是不适合国内市场。PyAlgoTrade:事件驱动框架,最新更新日期为16年8月17号。支持国内市场,应用python2.7开发,最大的bug在于不支持3.5的版本,以及不支持强大的pandas。pybacktest:以处理向量数据的方式进行回测,最新更新日期为2个月前,更新不稳定。TradingWithPython:基于pybacktest,进行重构。参考资料较少。ultra-finance:在github的项目两年前就停止更新了,最新的项目在谷歌平台,无奈打不开网址,感兴趣的话,请自行查看吧。RQAlpha:事件驱动框架,适合A股市场,自带日线数据。是米筐的回测开源框架,相对而言,个人更喜欢这个平台。2模拟模拟交易,同样是实盘交易前的重要一步。以防止类似于当前某券商的事件,半小时之内亏损上亿,对整个股市都产生了恶劣影响。模拟交易,重点考虑的是程序的交易逻辑是否可靠无误,数据传输的各种情况是否都考虑到。当下,个人看到的,喜欢用的开源平台是雪球模拟交易,其次是wind提供的模拟交易接口。像优矿、米筐和聚宽提供的,由于只能在线上平台测试,不甚自由,并无太多感觉。雪球模拟交易:在后续实盘交易模块,再进行重点介绍,主要应用的是一个开源的easytrader系列。Wind模拟交易:若没有机构版的话,可以考虑应用学生免费版。具体模拟交易接口可参看如下链接:http://www.dajiangzhang.com/document3实盘实盘,无疑是我们的终极目标。股票程序化交易,已经被限制。但对于万能的我们而言,总有解决的办法。当下最多的是破解券商网页版的交易接口,或者说应用爬虫爬去操作。对我而言,比较倾向于食灯鬼的easytrader系列的开源平台。对于机构用户而言,由于资金量较大,出于安全性和可靠性的考虑,并不建议应用。easytrader系列当前主要有三个组成部分:easytrader:提供券商华泰/佣金宝/银河/广发/雪球的基金、股票自动程序化交易,量化交易组件easyquotation:实时获取新浪/Leverfun的免费股票以及level2十档行情/集思路的分级基金行情easyhistory:用于获取维护股票的历史数据easyquant:股票量化框架,支持行情获取以及交易2.期货量化投资框架体系一直待在私募或者券商,做的是股票相关的内容,对期货这块不甚熟悉。就根据自己所了解的,简单总结一下。2.1回测回测,貌似并没有非常流行的开源框架。可能的原因有二:期货相对股票而言,门槛较高,更多是机构交易,开源较少;去年至今对期货监管控制比较严,至今未放开,只能做些CTA的策略,另许多人兴致泱泱吧。就个人理解而言,可能wind的是一个相对合适的选择。2.2模拟+实盘vn.py是国内最为流行的一个开源平台。起源于国内私募的自主交易系统,2019年初启动时只是单纯的交易API接口的Python封装。随着业内关注度的上升和社区不断的贡献,目前已经一步步成长为一套全面的交易程序开发框架。如官网所说,该框架侧重的是交易模块,回测模块并未支持。能力有限,如果对相关框架感兴趣的话,就详看相关的链接吧。个人期望的是以RQAlpha为主搭建回测框架,以雪球或wind为主搭建模拟框架,用easy系列进行交易。官方电话官方网站向TA提问。
    黄相成2019-12-21 19:43:34

相关问答

量化模型,是把数理统计学应用于科学数据,以使数理统计学构造出来的模型得到经验上的支持,并获得数值结果。这种分析是基于理论与观察的并行发展,而理论与观测又通过适当的推断方法而得以联系。一个完整的量化模型包括哪些?近几年,量化投资在国内兴起,但在很多人眼里,量化投资仿佛是一个非常神秘的新事物。而实际上,量化投资的无非就是宽客通过计算机语言,将交易策略布置到一个量化系统中,然后进行回测和实战的过程。量化投资的本质还是投资者的智慧,只是实现过程中运用到计算机这一工具。宽客们到底是如何系统的构建一个完整的量化模型的?可以肯定的是,宽客跟普通投资者一样,也在观察市场,产生一些普通投资者也会想到的想法,当宽客产生一些想法时,他们会通过计算机去验证他们的想法是否靠谱或者是能否带来收益。而作为普通投资者,实现想法往往是困难的,如同普通投资者在投资或炒股过程中,发现在15分钟K线图,上升趋势中股价跌破MA169后便会进入调整。普通投资者只是感觉,而宽客可以通过编写程序然后在市场的历史数据回测,验证这个想法是否靠谱。一个简单的想法编写成简单的程序,这明显不能称作为量化模型,但这却是任何一个量化模型的来源,即人的想法。完整的量化模型应当包括:策略模型、风险模型、交易成本模型、投资组合构建模型、执行模型,如下图:策略模型:策略模型可以说是整个量化模型最核心的部分,决定了整个量化模型的盈利能力。策略模型五花八门,归类划分为:理论驱动型和数据驱动型。数据驱动型的策略通过对数据的分析而揭开市场的面纱,说白了就是靠数据解释一切市场行为。理论驱动型策略通过理论去预测未来的市场行为,而其中的理论就是人们通过对市场的观察,然后给出符合经济学原理的解释。理论驱动型的策略可以划分为两大类:基于价格数据的交易策略和基于基本面数据的交易策略。基于价格数据的交易策略有:趋势跟随型动量策略、均值回复策略、技术情绪策略。基于基本面数据的交易策略有:价值型、成长型、品质型。如下图:1.趋势跟随型:标志性策略就是双均线策略,投资者认为在一定时间内市场通常是朝着同一方向变化的。说白了,就是看涨做涨。2.均值回复型:标志性策略就是统计套利策略,投资者认为在一定时间内市场并非朝着同一方向变化的。说白了,就是超涨了卖,超跌了买。3.技术情绪型:标志性策略就是情绪指标策略,投资者认为通过某些价格、成交量可以暗示对投资者对后续行情的情绪,随后进行相应操作。其中比较有意思是通过比较期权的认购量和认沽量,来判断投资者对后续行情的情绪。4.价值型:价值型策略的基本理念是:收益率越高,价格越低。通俗的讲,买入被低估的证券,卖出被高估的证券。5.成长型:成长型策略往往投资成长性公司,成长性公司是指较长一段时间内,具有持续挖掘未利用资源能力,不同程度地呈现整体扩张态势,未来发展预期良好的企业。通俗的讲,买入正在快速发展以及具有良好发展前景的公司股票。6.品质型:品质型策略选择公司的标志就不一样,有杠杆比率、收入来源的多样性、管理水平、欺诈风险等等。上述策略模型在实施过程中必须考虑选股范围、选股标准、投资期限、交易信号、仓位控制、止盈止损。一个策略模型应当包含的因素都不可少,不然会影响到整个策略模型,进而导致整个量化模型失败。风险模型:风险模型对于一个量化模型来说,是不可缺少的,它能提高量化模型盈利的质量和稳定性。风险模型分为:内部风险和外部风险。内部风险有:数据错误,个股风险,市场风险等等。外部风险有:网络风险,技术风险,物理风险等。1.数据错误:模型进行回测或者实盘交易的过程中,数据本身如果是错误的,那么交易最终的结果也是没有意义的,如果是实盘交易,那么后果也是不堪设想的。2.市场风险:量化模型在实盘交易过程中,由于整个策略程序并不能完美的预测出未来市场的任何一个变化,当宽客发现市场环境出现巨大变化,导致与量化策略所适应的的环境不一致时,就需要进行量化策略的暂停。3.个股风险:与市场风险对应的是个股风险,基于价格数据驱动的策略尤其需要堤防个股风险,当公司的基本面短时间内发生巨大变化时,但技术层面并未及时更新,导致量化模型买入垃圾股票。4.外部风险:外部风险指的是量化模型在实施过程中的现实风险,比如计算机下单时,由于网络中断,计算机硬件损坏,打雷地震等,导致交易单并未传送到交易所,从而产生损失。设置风险模型的意义就在于,当量化模型遇到上述风险时,宽客能够及时采取措施,进行人工干预或者预备计算机启动,尽可能的减少损失。交易成本模型:策略模型在于盈利,风险模型在于规避损失,交易成本模型则在于控制成本,使得整个量化模型的盈利最大化。交易成本模型的基本理念是:策略模型在运行过程中发生的成本较为精确的计算出来,从交易成本可以判断出策略模型运行频率。交易成本一般有:佣金与费用、滑点、市场冲击成本。通常计算交易成本的方法有:常值型交易成本,线性交易成本,分段型交易成本。在真实的交易环境中,由于市场冲击成本的存在,每次交易的成本都是不一样的,常值型和线性交易成本的缺陷非常明显,而分段型交易成本在实际操作过程中略微复杂,因此精确的计算出交易成本本身就是一项技术活。投资组合构建模型:投资组合构建模型在于构建一个能创造最大盈利的投资组合。主要分为:基于规则的投资组合构建模型和基于优化的投资组合构建模型。基于规则的投资组合构建模型主要分三类:相等头寸加权,相等风险加权,信号驱动型加权。其中前两类分别保证了投资组合的每个个股头寸相等和所承担的风险相等。第三类根据信号强度来加权,投资组合中个股与策略模型设定的条件越接近则赋予的权重越大,这是合理决定头寸规模的最佳途径。执行模型:执行模型是实施量化模型的最后一个环节,如果没有执行模型,那么整个量化模型并没有存在的意义。执行模型中订单执行算法是最关键的,其主要目的是,以尽可能低的价格,尽可能完整地完成想要交易的订单。具体的执行算法包括:采用何种订单类型,采用进取订单还是被动订单,采用大订单还是小订单。对于资金量比较小的宽客,执行模型往往是比较简单的,一旦出现信号,其所需成交量的并不需要太大。而对于资金量较大的宽客来说,执行模型是比较复杂的,需要根据实际情况来选择合适的下单方式。以上就是量化模型的整个系统框架,其中任何一个部分都发挥至关重要的作用,因此一个完整的能盈利的量化模型是非常有价值的。