为什么并励发电机的输出电压随负载电流的增加而降低

黄珈庚 2019-12-21 21:07:00

推荐回答

他励和并励直流发电机的外特性形状差不多,但并励发电机的外特性较他励发电机软一点,当负载增大时,并励发电机电压下降比他励发电机电压下降厉害;这是因为他励发电机端电压的下降仅与电枢回路电阻和电枢反应的附加去磁作用有关;而并励发电机除上面二个因素外,还会因端电压的下降,励磁电流也会减小,磁通减小,使端电压进一步下降,所以并励发电机外特性更软。
符腾丹2019-12-21 23:57:09

提示您:回答为网友贡献,仅供参考。

其他回答

  • 它励式发电机的励磁由其它电源供电,励磁电压电流和负载大小没关系。并励式发电机的励磁电压电流和端电压有关,负载电流增大时,端电压会下降,励磁电流也会下降,促使端电压下降更多。
    黄盛斌2019-12-21 22:00:30
  • 直流发电机的外特性是微微下垂的直线,减小负载电阻相当于负载增加,结果是负载电流增大,电枢端电压略有下降。
    赵顺贵2019-12-21 21:54:29
  • 无功负荷在交流电路中是不被消耗的,它是不断地在发电机和电感设备,其大小随If的增大而增加。但是,由于电机磁路铁心有饱和现象,所以两者不成正比。反映空载电动势E0与励磁电流If关系的曲线称为同步发电机的空载特性。同步发电机的电枢反应磁场与转子励磁磁场均可近似地认为都按正弦规律分布。它们之间的空间相位差取决于空载电动势E0与电枢电流I之间的时间相位差。电枢反应磁场还与负载情况有关。当发电机的负载为电感性时,电枢反应磁场起去磁作用,会导致发电机的电压降低;当负载呈电容性时,电枢反应磁场起助磁作用,会使发电机的输出电压升高。发电机。
    黄界颍2019-12-21 21:36:31
  • 同步发电机改变励磁电流,发电机输出端电压会随着励磁电流同方向改变,原本发电机就是通过检测输出电压控制励磁来实现稳压的,电流只是随负载而改变。如果励磁控制是开环的,并且负载不变,则增大励磁电流使输出电压增加,电压的增加才会导致输出电流增大,反之则反。
    赵颖雷2019-12-21 21:18:31

相关问答

久期和凸性是衡量债券利率风险的重要指标。很多人把久期简单地视为债券的到期期限,其实是对久期的一种片面的理解,而对凸性的概念更是模糊。在债券市场投资行为不断规范,利率风险逐渐显现的今天,如何用久期和凸性量化债券的利率风险成为业内日益关心的问题。久期久期也称持续期是1938年由F.R.Macaulay提出的,用来衡量债券的到期时间。它是以未来收益的现值为权数计算的到期时间。其公式为其中,P=债券现值,Ct=每年支付的利息,y=到期收益率,n=到期期数,M=到期支付的面值。可见久期是一个时间概念,是到期收益率的减函数,到期收益率越高,久期越小,债券的利率风险越小。久期较准确地表达了债券的到期时间,但无法说明当利率发生变动时,债券价格的变动程度,因此引入了修正久期的概念。修正久期修正久期是用来衡量债券价格对利率变化的敏感程度的指标。由于债券的现值对P求导并加以变形,得到:我们将的绝对值称作修正久期,它表示市场利率的变化引起的债券价格变动的幅度。这样,不同现值的券种就可以用修正久期这个指标进行比较。由公式1和公式2我们可以得到:在某一特定到期收益率下,P为常数,我们记作P0,即得到:由于P0是理论现值,为常数,因此,债券价格曲线P与P/P0有相同的形状。由公式7,在某一特定到期收益率下,P/P0的斜率为修正久期,而债券价格曲线P的斜率为P0×修正久期。修正久期度量了收益率与债券价格的近似线性关系,即到期收益率变化时债券价格的稳定性。修正久期越大,斜率的得绝对值越大,P对y的变动越敏感,y上升时引起的债券价格下降幅度越大,y下降时引起的债券价格上升幅度也越大。可见,同等要素条件下,修正久期小的债券较修正久期大的债券抗利率上升风险能力强,但抗利率下降风险能力较弱。但修正久期度量的是一种近似线性关系,这种近似线性关系使由修正久期计算得出的债券价格变动幅度存在误差。如下图,对于债券B′,当收益率分别从y上升到y1或下降到y2,由修正久期计算出来的债券价格变动分别存在P1′P1"和P2′P2"的误差。误差的大小取决于曲线的凸性。市场利率变化时,修正久期稳定性如何?比如上图中,B′和B"的修正久期相同,是否具有同等利率风险呢?显然不同。当y变大时,B"价格减少的幅度要小,而当y变小时,B"价格变大的幅度要大。显然,B"的利率风险要小于B′。因此修正久期用来度量债券的利率风险仍然存在一定误差,尤其当到期收益率变化较大时。凸性可以更准确地度量该风险。凸性利用久期衡量债券的利率风险具有一定的误差,债券价格随利率变化的波动性越大,这种误差越大。凸性可以衡量这种误差。凸性是对债券价格曲线弯曲程度的一种度量。凸性越大,债券价格曲线弯曲程度越大,用修正久期度量债券的利率风险所产生的误差越大。严格地定义,凸性是指在某一到期收益率下,到期收益率发生变动而引起的价格变动幅度的变动程度。根据其定义,凸性值的公式为:凸性值=凸性值是价格变动幅度对收益率的二阶导数。假设P0是理论现值,则凸性值=应用由于修正久期度量的是债券价格和到期收益率的近似线性关系,由此计算得出的债券价格变动幅度存在误差,而凸性值对这种误差进行了调整。根据泰勒系列式,我们可以得到的近似值:这就是利用修正久期和凸性值量化债券利率风险的计算方法。我们可以看到,当y上升时,为负数,若凸性值越大,则的绝对值越小;当y下降时,为正数,若凸性值越大,则越大。因此,凸性值越大,债券利率风险越小,对债券持有者越有利;而修正久期具有双面性,具有较小修正久期的债券抗利率上升风险较强,而当利率下降时,其价格增幅却小于具有较大修正久期债券的价格增幅。以国债21国债15和03国债11为例,两券均为7年期固息债,每年付息一次附表为今年3月1日的有关指标。相比之下,21国债15具有较小的修正久期和较小的凸性值。如果收益率都上升50个基点,其价格变动幅度分别为:21国债15:03国债11:可见经过对久期和凸性的简单计算,可以比较直观地衡量债券的利率风险。如果收益率变动幅度不大,则一般修正久期即可以作为度量利率风险的近似指标。