推荐回答
重点:数模论文的格式及要求难点:团结协作的充分体现一、写好数模论文的重要性1.数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据.2.数模论文是培训或竞赛活动的最终成绩的书面形式。3.写好论文的训练,是科技论文写作的一种基本训练。二、数模论文的基本内容1,评阅原则:假设的合理性;建模的创造性;结果的合理性;表述的清晰程度2,数模论文的结构0、摘要1、问题的提出:综述问题的内容及意义2、模型的假设:写出问题的合理假设,符号的说明3、模型的建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等4、模型的求解:求解及算法的主要步骤,使用的数学软件等5、模型检验:结果表示、分析与检验,误差分析等6、模型评价:本模型的特点,优缺点,改进方法7、参考文献:限公开发表文献,指明出处8、附录:计算框图、计算程序,详细图表三、需要重视的问题0.摘要表述:准确、简明、条理清晰、合乎语法。字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论。还可作那些推广。1、建模准备及问题重述:了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。2、模型假设、符号说明基本假设的合理性很重要附录:计算框图,原程序及打印结果。六、分工协作取佳绩最好三人一组,这三人中尽量做到一人数学基础较好,一人应用数学软件和编程的能力较强,一人科技论文写作水平较好。科技论文的写作要求整篇论文的结构严谨,语言要有逻辑性,用词要准确。三人之间要能够配合得起来。若三人之间配合不好,会降低效率,导致整个建模的失败。在合作的过程中,最好是能够找出一个组长,即要能够总揽全局,包括任务的分配,相互间的合作和进度的安排。在建模过程中出现意见不统一时,要尊重为先,理解为重,做到“给我一个相信你的理由”和“相信我,我的理由是……”,不要作无谓的争论。要善于斗争,勇于妥协。还要注意以下几点:注意存盘,以防意外写作与建模工作同步注意保密,以防抄袭数学建模成功的条件和模型:有兴趣,肯钻研;有信心,勇挑战;有决心,不怕难;有知识,思路宽;有能力,能开拓;有水平,善协作;有办法,点子多;有毅力,轻结果。
符能江2019-11-06 14:57:49
提示您:回答为网友贡献,仅供参考。
其他回答
-
毕业论文,泛指专科毕业论文、本科毕业论文等,即需要在学业完成前写作并提交的论文,是教学或科研活动的重要组成部分之一。其主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,使学生得到从事本专业工作和进行相关的基本训练。其主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,使学生得到从事本专业工作和进行相关的基本训练。毕业论文应反映出作者能够准确地掌握所学的专业基础知识,基本学会综合运用所学知识进行科学研究的方法,对所研究的题目有一定的心得体会,论文题目的范围不宜过宽,一般选择本学科某一重要问题的一个侧面。毕业论文的基本教学要求是:1、培养学生综合运用、巩固与扩展所学的基础理论和专业知识,培养学生独立分析、解决实际问题能力、培养学生处理数据和信息的能力;2、培养学生正确的理论联系实际的工作作风,严肃认真的科学态度;3、培养学生进行社会调查研究;文献资料收集、阅读和整理、使用;提出论点、综合论证、总结写作等基本技能。毕业论文是毕业生总结性的独立作业,是学生运用在校学习的基本知识和基础理论,去分析、解决一两个实际问题的实践锻炼过程,也是学生在校学习期间学习成果的综合性总结,是整个教学活动中不可缺少的重要环节。撰写毕业论文对于培养学生初步的科学研究能力,提高其综合运用所学知识分析问题、解决问题能力有着重要意义。毕业论文在进行编写的过程中,需要经过开题报告、论文编写、论文上交评定、论文答辩以及论文评分五个过程,其中开题报告是论文进行的最重要的一个过程,也是论文能否进行的一个重要指标。
齐晓全2019-11-06 15:54:52
-
游戏中的数学一天,熙熙姐姐交给我们一个游戏:两人轮流从1—10按顺序报数,每次只能报1、2或3个数,谁先报到10,谁就赢了。大家都想将对方“打倒”,但是,怎样才能让自己百分之百的胜利呢?这个问题总在我的脑海中回荡,使我疑惑不解。回到家,我在小篮子里挑了十个石子,准备新手操作一下。我把爸爸叫来,让爸爸和我一起做这个游戏。我找来一支笔和一本本子,将我做的每一步记录下来。规则是这样的:我和爸爸轮流拿石子,最多拿3个,最少拿1个,谁拿到最后一个,谁就赢了。第一场我失败了。原来,爸爸先拿,爸爸让我在最短的时间内输的“很惨”;第二场我先拿,我居然赢了……我将记录反复看了几遍,终于发现,我用最大的和最小的数相加:即1+3=4,又用了石子总数除以最大数与最小数的和,也就是10÷4=2…2,如果有余数,就我先拿,余数是几就那几个石子,如果没有余数,让对方先拿。现在余数是2,就拿2个石子,剩下的每次拿的石子和对方拿的和是除数3,我就可以必胜了。为了保证答案的准确性,我又拿了28个石子和爸爸重新玩,有了上面的规律,我果然战无不胜!!!原来,生活中数学无处不在,它们正等着你去发现呢!学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。我在商场里学数学用数学之买家角度作为一个买家,最主要的是要做到货比三家。要买一件衣服,遇到合适的不妨先把品牌、尺码、价格记下来再到别的店做比较。一个物品的价格是进价+运费+税费+厂商利润,还有店铺租金员工工资等一系列附加成本,所以往往卖价要比商品价值高太多了。其实在省钱这方面有一个更好的办法——网上购物。网上购物价格要便宜多了。在网上一个物品的价格是进价+运费。一件三四百的衣服,在网上可能只卖五六十,十分实惠。就算加上运费也要便宜许多。所以,我认为现在商场中挑选自己合适的东西,把品牌、货号、以及自己合适的尺码记好,再到网上购买。当然有些东西在网上是买不到的,这是就只有货比三家挑出最实惠的再买了。可能有许多人认为一分价钱一分货,便宜没好货……我可以这么说,只要掌握好方法,便宜也是可以买到好东西的。同样一件商品,便宜的和贵的,您会选择哪个呢?大家也知道网上东西便宜,但存在的风险较大。这就需要我们有一定的警惕性了!网上卖东西的商家是有信誉度的,这个信誉度直接显示在网页上以供买家参考。同时还有成交量啊,好评度阿以及买家的留言,这些都是购物网站为了防止网上骗子行骗所设置的。现在网上购物已经很透明了,多转转多看看总吃不了亏。毕竟网上购物还是风险大,所以不妨我们再来看看商场里的活动吧,商场里的活动多,又诱人,其中会不会有什么小陷阱呢?这时就需要运用我们的数学啦!“买一赠一了啊,满200送200!”哟,你瞧,活动来了!1.满额送券销售活动每过节假日,我们行走在繁华的大街上,随处可见商家打出的“满200送200”的促销招牌。消费者们蜂拥而至,商场里人山人海,抢购成风。而实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满200送200元券”只是商家的一种促销手段,其中暗藏着数学问题。就说满200送200元购物券。某顾客先用490元买了一件羊绒外衣,送来了400元购物券。此时得到的四百元购物券,一般顾客心理都会产生一种捡便宜的感觉,于是就产生了较强的购买欲望,意欲花完为快。喔~~~原来如此啊!这个还得看人数呢!还牵扯到优惠金额,嗯……数学是多么重要哇!”学数学固然重要,但是最终目的还是能把它合理运用到实际生活中来,我们要学会学数学用数学。
黄盱宁2019-11-06 15:06:00
-
在图书馆看到过一本数学史专门介绍各个厉害的数学家,现在就写几个我记过笔记的吧。拉马努强的的士数1729这是个有趣的数字!可以用两个立方之和来表达而且有两种表达方式的数之中,1729是最小的。大神学习数学的方式绝非常人。他买了本写着五千多条数学定理和公式的书,又买了个厚厚的本子,然后开始一条条用自己的方式证明。后来他结了婚,在真奈找了份抄写员的工作,怎么看起来有些眼熟是吧差不多几年前有个叫阿尔伯特-爱因斯坦的犹太人也在瑞士伯尔尼的专利局里获得了同样的一份工作,所以说隐藏着绝世高手的职业不仅有图书馆管理员,抄写员也是。过了一段时间拉马努强或许是觉得一个人研究有些无聊,于是给剑桥大学发了一长串复杂的定理,三一学院的院士、当时数学界影响力巨大的英国分析学派的扛把子哈代教授从定理中看到了智慧的光芒,将他从印度带到剑桥,然后讲了他还没彻底搞定的广相场方程,希尔伯特后就先于爱因斯坦本人推出了场方程作用量的形式。费马定理与怀尔斯1637年,被称为业余数学家之王的法国人皮埃尔-德-费马在他的笔记本上写道:不可能将一个立方数写成两个立方数之和;或者将一个4次幂写成两个4次幂之和;或者,总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。这个喜欢恶作剧的天才,又在后面写下一个附加的评注:我有一个对这个命题的十分美妙的证明,这里空白太小,写不下。费马死后,他的儿子意识到这些草草写就的自己或许有其价值,用了五年时间将其印刷刊出,这些被侥幸发现的蛛丝马迹成了其后所有数学家的不幸。一个高中生就可以理解的定理,成了数学界最大的悬案,从此将那些世界上最聪明的头脑整整折磨了358年。一代又一代的数学天才前赴后继,向这一猜想发起挑战。费马大定理本身从提出到证明的过程,就是一部不折不扣的惊险小说。寻求费马大定理证明的过程,牵动了这个星球上最有才智的人,充满绝望的反抗、意外的转机、隐忍的耐心、灿烂的灵性。欧拉,18世纪最伟大的数学家之一,在那本特殊版本的《算术》中别的地方,发现费马隐蔽地描述了对4次幂的一个证明。欧拉将这个含糊不清的证明从细节上加以完善,并证明了3次幂的无解。但在他的突破之后,仍然有无数多次幂需要证明。等到索非-热尔曼、勒让德、狄利克雷、加布里尔-拉梅等几个法国人再次取得突破时,距离费马写下那个定理已经过去了将近200年,而他们才仅仅又证明了5次幂和7次幂。事实上拉梅已经宣布他差不多就要证明费马大定理了,另一位数学家柯西也紧随其后说,要发表一个完整的证明。然而,一封来信粉碎了他们的信心:德国数学家库默尔看出这两个法国人正在走向同一条逻辑的死胡同。在让两位数学家感到羞耻的同时,库默尔也证明了费马大定理的完整证明是当时的数学方法不可能实现的。这是数学逻辑的光辉一页,也是对整整一代数学家的巨大打击。20世纪,数学开始转向各种不同的研究领域并取得非凡进步。1908年,德国实业家沃尔夫斯凯尔为未来可能攻克费马大定理的人设立了奖金,但是,一位不出名的数学家却似乎毁灭了大家的希望:因为这个问题是如此困难,提出不完备性定理的哥德尔甚至怀疑这是一个在现有算术公理体系中无法解决的问题。尽管有哥德尔致命的警告,尽管经受了三个世纪壮烈的失败,但一些数学家仍然冒着白白浪费生命的风险,继续投身于这个问题。二战后随着计算机的出现,大量的计算已不再成为问题。借助计算机的帮助,数学家们对500以内,然后在1000以内,再是10000以内的值证明了费马大定理,到80年代,这个范围提高到25000,然后是400万以内。但是,这种成功仅仅是表面的,即使那个范围再提高,也永远不能证明到无穷,不能宣称证明了整个定理。破案似乎遥遥无期。1963年,年仅十岁的安德鲁-怀尔斯在一本名叫《大问题》的书中邂逅费马大定理,便知道自己永远不会放弃它,必须解决它。70年代,他正在剑桥大学研究椭圆方程,看来与费马大定理没什么关系。此时,两位日本数学家已经提出谷山-志村猜想,将怀尔斯正在研究的椭圆方程与模形式统一在一起。看来也与费马大定理没什么关系。80年代,几位数学家将17世纪最重要的问题与20世纪最有意义的问题结合在一起,找出了证明费马大定理的钥匙:只要能证明谷山-志村猜想,就自动证明了费马大定理。曙光在前,但并没有人对黎明的到来抱有信心,谷山-志村猜想已经被研究了30年,都以失败告终,如今与费马大定理联系在一起,更是连最后的希没有了,因为,任何可能导致解决费马大定理的事情根据定义是根本不可能实现的——这几乎已成定论。就连发现钥匙的关键人物肯-里贝特也很悲观,“我没有真的费神去试图证明它,甚至没有想到过要去试一下。大多数其他数学家,包括安德鲁·怀尔斯的导师约翰-科茨,都相信做这个证明会劳而无功,“我必须承认我认为在我有生之年大概是不可能看到它被证明了。几乎所有人都已经放弃,除了安德鲁-怀尔斯。怀尔斯放弃了所有与证明费马大定理无直接关系的工作,在完全保密的状态下,展开了一个人对这个困扰世间智者三百多年谜团的孤独挑战,妻子是唯一知道他在从事费马问题研究的人。苦心孤诣的安德鲁-怀尔斯经过七年专心努力,完成了谷山-志村猜想的证明。1993年6月23日,剑桥牛顿研究所,他开始了本世纪最重要的一次数学讲座,每一个对促成费马大定理证明做出过贡献的人实际上都在现场的房间里,两百名数学家被惊呆了,他们看到的是,三百多年来第一次,费马的挑战被征服。怀尔斯写上费马大定理的结论,然后转向听众,平和地说,“我想我就在这里结束。会场上爆发出一阵持久的掌声,第二天,数学家第一次占据了报纸的头版头条。人物》杂志将他与黛安娜王妃、奥普拉一起列为“本年度25位最具魅力者”之一,一家时装公司则请这位温文尔雅的天才为他们的新系列男装做了广告。但事情并没有在这里结束,接下来的发展依然像惊险小说一样,悬案得破,但案犯并不轻易束手就擒。怀尔斯长达200页的手稿投交到《数学发明》杂志,开始了庞杂的审稿过程。这是一个特大型的论证,由数以百计的数学计算通过数以千计的逻辑链环错综复杂地构造而成。只要有一个计算出差错或一个链环没衔接好,整个证明将可能失去其价值。值得解决的问题会以反击来证明它自己的价值。在苛刻的审稿过程中,审稿人碰到了一个似乎是小问题的问题。而这个问题的实质是,无法使怀尔斯像原来设想的那样保证某个方法行得通。他必须加强他的证明。时间越耗越长,问题依然解决不了,全世界开始对怀尔斯产生怀疑。14个月的时间过去了,他准备公开承认失败并发表一个证明有缺陷的声明。在山穷水尽的最后时刻,1995年9月19日,一个星期一的早晨,他决定最后检视一次,试图确切地判断出那个方法不能奏效的原因。一个突然迸发的灵感使他的苦难走到了尽头:虽然那个方法不能完全行得通,但只需要可以使另一个他曾经放弃的理论奏效,正确答案就可以出现在废墟之中——两个分别不足以解决问题的方法结合在一起,就可以完美地互相补足。足足有20分钟,怀尔斯呆望着那个结果不敢相信,然后,是一种再也无事可做的巨大失落感。一百年前,专为费马大定理而设的沃尔夫斯凯尔奖将截止日期定为2019年9月13日。就像所有的惊险片一样,炸弹在即将起爆的最后一刻,被拆除了。这个故事和中国人所熟悉的陈景润与哥德巴赫猜想的故事如出一辙,可惜的是陈景润只是将哥德巴赫猜想的证明往前推进了一大步而并未完成最终证明,安德鲁-怀尔斯却将费马大定理彻底解决。偏微分的研究什么是偏微分方程?简单的说就是一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程;如果如果未知函数和几个变量有关,而且方程中出现未知函数对应几个变量的导数,那么这种微分方程就是偏微分方程。偏微分的研究始于数学史上最多产的数学家欧拉,据说这位大神一年能写八百页的论文,这码字速度远远超过愤怒的香蕉和志鸟村,人家写的还是专业论文。他在自己的论文中提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程,这些著作当时没有引起多大注意。接着大神伯努利和傅里叶等人在这一领域进行了更多的研究,直接导致了数学物理方程这一分支的建立。傅里叶的著名论文《热的理论解析》听起来像是物理论文,但却成为数学史上的经典论文之一。然后格林在剑桥建立了数学物理学派,他培育了汤姆逊、麦克斯韦等大神,他们使用偏微分作为求解重要物理问题的屠龙宝刀,并取得巨大进展,麦克斯韦轰动世界的电磁场方程就是这一学派的辉煌胜利。爱因斯坦在谈起这段历史的时候说道,“偏微分方程进入到物理学的时候不过是婢女,现在却成了主母!”。到了今天偏微分已经成为研究物理化学的基础,可以说如果你不懂这个,那么你就几乎没有在物理化学上取得成就的可能。一般的数学论文可以分为四个板块,第一板块是前言,先简单说明一下自己这篇文章写的是什么,然后讲讲问题背景,再往后就是自己解决了什么问题。第二板块是序言,一般而言,这里面介绍你要用到的工具,比如各种定义,公理。第三板块就是你的证明或者解题过程,整篇论文的精华就在这里了,要求条理清楚、逻辑严密,绝对不要出现一丝漏洞。最后一个部分就是你做出的这个成果有什么用了,这部分可以写也可以不写,因为数学研究到现在这个阶段,很多数学家都是因为兴趣而进行研究,他们也不清楚自己研究出来的东西有神马用。更多的可能是这篇论文的结论可能没什么卵用,但是解题的过程却能带来科学的巨大进步。还有一个是杜撰的不过很凄美心型线1649年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。几天后,他意外的接到通知,国王聘请他做小公主的数学老师。跟随前来通知的侍卫一起来到皇宫,他见到了在街头偶遇的女孩子。从此,他当上了小公主的数学老师。公主的数学在笛卡尔的悉心指导下突飞猛进,每天形影不离的相处使他们彼此产生爱慕之心,公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,小公主克里斯汀苦苦哀求后,国王将其流放回法国,克里斯汀公主也被父亲软禁起来。笛卡尔回法国后不久便染上重病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:ra1-nθ。国王看不懂,觉得他们俩之间并不是总是说情话的,将全城的数学家召集到皇宫,但没有一个人能解开,他不忍心看着心爱的女儿整日闷闷不乐,就把这封信交给一直闷闷不乐的克里斯汀我最喜欢的四色猜想这一定理通俗的说法是:每个平面地图都可以只用四种颜色来染色,而且没有两个邻接的区域颜色相同。听起来很简单不是么?当这一猜想提出的时候大家也都这么认为,那些心高气傲的数学家不屑于在如此简单的问题上花费精力,直到哥廷根学派的重要人物、爱因斯坦的老师、为广义相对论做出突出贡献的闵可夫斯基注意到了这个问题。一次拓扑课上,闵可夫斯基向学生们自负的宣称,“这个定理没有证明的最要的原因是至今只有一些三流的数学家在这上面花过时间。下面我就来证明它。然后……,这节课结束的时候,没有证完;到下一次课的时候,闵可夫斯基继续证明,还是没有搞定。一直几个星期过去了……一个阴霾的早上,闵可夫斯基跨入教室,那时候,恰好一道闪电划过长空,雷声震耳;他很严肃的说,“上天被我的骄傲激怒了,我的证明是不完全的……”1942年的时候,莱夫谢茨去哈佛大学做了个报告,伯克霍夫是他的好朋友,讲座结束之后,就问他最近在普林斯顿大学有没有什么有意思的东西。莱夫谢茨说有一个人刚刚证明了四色猜想。伯克霍夫严重的不相信,说要是这是真的,就用手和膝盖,直接爬到普林斯顿的数学系大楼去。几十年间,数学界对四色定理的观感竟发生了如此大的变化;直到1976年,美国数学家阿佩尔和哈肯,在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,最终证明了四色定理,轰动了世界。
黄百花2019-11-06 15:02:19